現場レポートコンテスト

VMAXと次世代足場との融合

全景

2024/5/15

現場概要

橋長:116.6m

幅員:7.7m

構造:鋼桁、2径間連続トラス橋

工事内容:塗り替え塗装(1径間のみ)

HBT取替工

施工前

ポイント

- ・上弦材・側面を塗装する足場が必要
- ・上弦からの吊り足場では、施工に時間がかかり、 吊クランプ箇所に、ダメが残る。

・側面も、足場にして施工時間を短縮する。

問題点

側面足場の施工で、チェーンは持つのか?

強度計算書で確認しよう!

2.2. 張出部

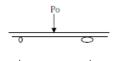
① 断面形状

図面を参照

ころばし材間隔 40 cm として検討

② 荷重

作業	:員 :材料及び工具	700 N 350 N	ころばし間隔8
	・材料及び工具 ・係数(20%)	210 N	_NGなので4001
	121 -	1260 N	-110/0/ > 2 /00/


ミレニュームの自重

支柱	P-18G P-09G	6. 4 3. 5	kg/本 kg/本	×	8	本× 本×	9.8 9.8	=	501. 8 N 102. 9 N
下部支柱 水平材 手摺	P-2. 2G SC06G SC18G	1. 4	kg/本 kg/本 kg/本	× ×	5	本× 本× 本×	9. 8 9. 8 9. 8	=	27. 4 N 83. 3 N
セイフティウォーク	N2 · N224	4. 6 16. 2	kg/枚	×	10 4/2	本× 枚× 本×	9.8	=	450. 8 N 317. 5 N
光行手描 階段+手すり	STXC1809	6. 4 19. 4	kg/本 kg/本	×	5 4/2	本×	9.8 9.8	=	313. 6 N 380. 3 N
							P1	=	2178 N

(3) 足場板の検討

使用足場板材:

杉足場板

400

断面諸元

断面係数

$$Z = bh^2/6 = 40.8 \text{ cm}^3$$

 $I = bh^3/12 = 71.4 \text{ cm}^4$ 断面2次モーメント

許容曲げ応力度

fb= 1030 N/cm² ##V

**H150

16.20 H=450 · 900

STXC1809

1000

市里成文

##±->: @1245

3 188√ 8880

使っなが草葉:中48.6

P18G

P186

P18G

P186

S P096

ヤング係数

 $E = 700000 \text{ N/cm}^2$

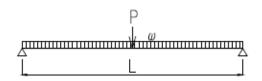
足場板の自量

W1 = 0.441 N/cm 18 kg/4m)

集中荷重

$$M = \frac{Po \cdot L}{4} + \frac{W \cdot L^2}{2}$$

23576 Ncm


応力度

$$= \frac{M}{Z} = \frac{23576}{40.8} = 578 \text{ N/cm}^2$$

< 1030 N/cm²

3.2. 張出部

*ころばし材の断面諸元

 $Z = 4.68 \text{ cm}^3$ 断面係数

断面2次モーメント I = 11.7 cm⁴

許容曲げ応力度 fb= 15680 N/cm²

足場板の自重 $W1 = 0.022 \text{ N/cm}^2$

ころばし材の自重 W2= 0.234 N/cm

おやご材の間隔 L= 124.5 cm

ころばし材の間隔 L= 40 cm

① ころばし材の検討

足場2柱の荷重が3本のころばしに均等にかかるものとする。

計算は支持間隔(1.245 m) で行う。

おやご間隔1855では NGなので1245に

足場板の自重 w1 =

ころばし材の自重

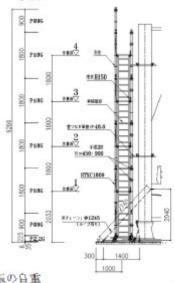
集中荷重の合計 Рο

分布荷重の合計

曲げモーメント

$$M = \frac{Po \cdot L}{4} + \frac{W \cdot L^{2}}{8}$$

$$= \frac{1985.9 \times 124.5}{4} + \frac{1.114 \times 124.5}{8}$$


$$= 63968 \text{ Ncm}$$

応力度

$$\sigma = \frac{M}{Z} = \frac{63968}{4.68} = 13668 \text{ N/cm}^2$$

< 15680 N/cm²

② おやごの検討

*おやご材の断面諸元

断面係数 $Z = 12.9 \text{ cm}^3$

 $I = 45.89 \text{ cm}^4$ 断面2次モーメント

許容曲げ応力度 fb= 15680 N/cm2

足場板の自重 W1 = 0.022 N/cm²

ころばし材の自重 W2= 0.234 N/cm

おやご材の自重 W3= 0.564 N/cm

おやご材の間隔 L= 124.5 cm

吊りチェーンの間隔 L= 140 cm

< 15680 N/cm²

足場板の自重

w1 ころばし材の	- 白 新	0.022 N/cm ²	×	124. 5	cm	=	2.739 N/cm
w2	=	0. 234 N/cm	×	124.5	cm	÷	40cm
	=	0. 728 N/cm					
おやご材の目	重						

0.564 N/cm w3 =

集中荷重の合計 Po

分布荷重の合計 W

曲げモーメント
$$M = \frac{P \cdot L}{4} + \frac{W \cdot L^{2}}{8}$$

$$= \frac{3437.6 \times 140}{4} + \frac{4.031 \times 140}{4}$$

応力度

$$\sigma$$
 = $\frac{M}{Z}$ = $\frac{130190}{12.9}$ = 10092 N/cm^2

w1+w2+w3

130190 Ncm

③ 吊りチェーンの検討

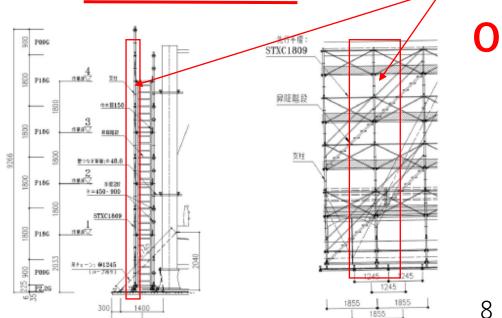
吊チェーンにかかる荷重

吊りチェーン1本に作用する荷重

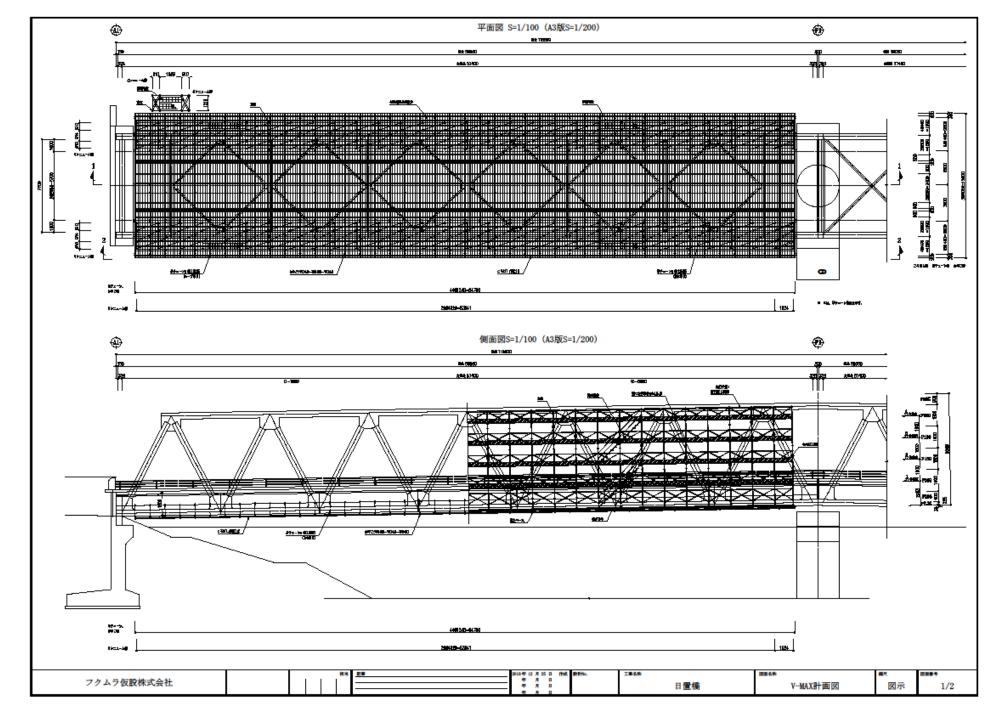
死荷重 足場板	0.441	×	100	×	6	枚=	264. 6	
おやご	0.564	×	100				56. 4	
ころばし	0.234	\times	124.5	×	3	本=	87.4	
活荷重 作業員	1260	×	1			=	1260.0	
					P1		1668 4 N	

ミレニュームの自重

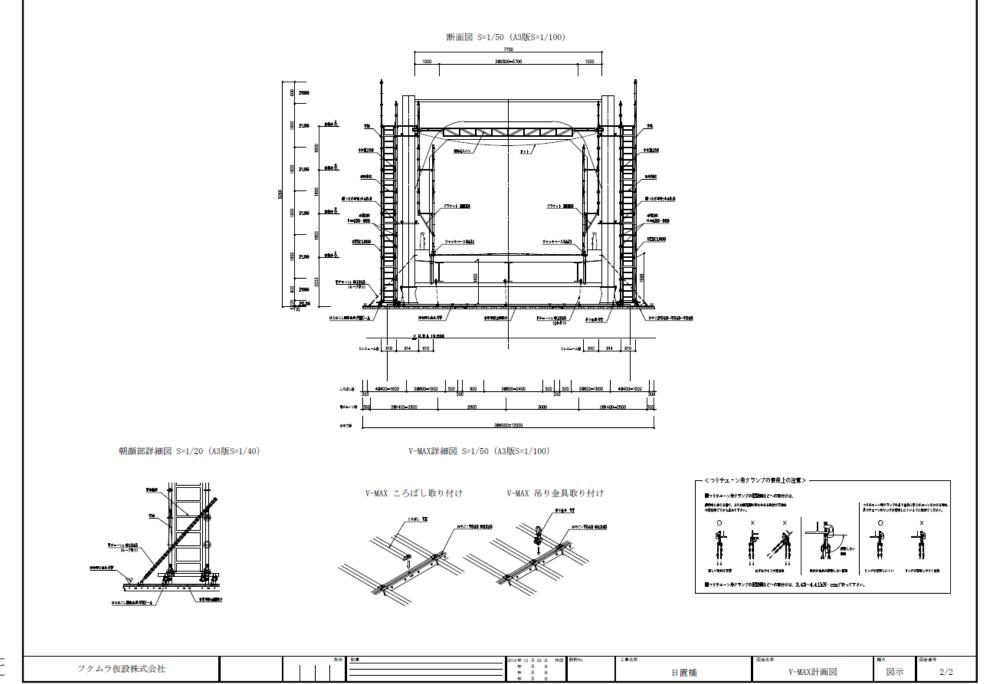
P2 =
$$2178 \text{ N}$$
 / 2 = 1088.8 N


P = $(P1 + P2) \times 2740$ / 2040

($1668.4 + 1088.8$) × 2740 / 2040


= 3703.0 N

チェーン1本当たりの耐荷重


この部分の荷重に Ta = 4210 N (ループ吊り) チェーンが持った! よって 3703.0 N < 4210 N

足場図面

足場図面


組立て中

組立て中

組立て中

完成

2024/5/15